Intercomparison of operational wave forecasting systems against buoys: data from ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM
October 2015 to December 2015

Jean-Raymond Bidlot, European Centre for Medium-range Weather Forecasts, jean.bidlot@ecmwf.int

February 2, 2016
Chapter 1

Forewords

Outputs from different fully operational forecasting centres are compared to buoy and platform data as broadcasted to the meteorological community via the Global Telecommunication System (GTS). On a monthly basis, data are gathered informally from weather services with an interest in wave forecasting (Bidlot and Holt, 2006). The different data sets are subsequently merged and made available to all participating partners for further evaluation. In this document, examples, in graphical and tabular forms, are shown. These results have been processed at ECMWF and should served as an example to the kind of information that could be obtained from such comparison. No statement of quality, nor reasons why the different systems are performing differently will be given.
Chapter 2

Data

Before using observations for verification, care has to be taken to process the data to remove any erroneous observations. Moreover, extra care has to be taken to match the scale of both model and observations. This scale matching is achieved by averaging the hourly data in ±2 hour time windows centered on the four major synoptic times corresponding to the normal model output times. The original quality control and averaging procedure was discussed in Bidlot et al. (2002). It was extended to include platform data as described in Sætra and Bidlot (2004). Note that in this paper we refer to these data as buoy data since most of them are from moored buoys, except if stated otherwise.

The intercomparison relies on the exchange of model output at buoy locations. An agreed upon list of locations is used where observations are known to be available. Because buoy networks are changing with time, as witnessed by a rapid increase in the number of buoys available via the GTS since the mid-nineties, updates to the list have been necessary. Not all participating centres have been able to update their list however. Other participants are only running limited area model(s) or do produce the parameter(s) that can be compared to the buoy data. Because of the limited number of buoys, a fair comparison between the different systems can only be achieved if the same number of buoys and the same number of buoy-model collocations are used.

In this document, data that are common to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM are used whenever available. Some sub-areas might only have some of the participants and when all locations are considered, the limited models are left out. The other participants are left blank in the plots below.

Contents

1 Forewords

2 Data

3 Results

3.1 Comparison for all buoys

3.2 Comparison for Hawaiian buoys

3.3 Comparison for North East Pacific buoys

3.4 Comparison for North West Atlantic buoys

3.5 Comparison for Gulf of Mexico buoys

3.6 Comparison for Caribbean Sea buoys

3.7 Comparison for North East Atlantic buoys

3.8 Comparison for Euro-Atlantic Coast buoys

3.9 Comparison for North Sea platforms

3.10 Comparison for North Sea buoys

3.11 Comparison for Icelandic buoys and Norwegian platforms

3.12 Comparison for Barents Sea buoys

3.13 Comparison for Baltic Sea buoys

3.14 Comparison for English Channel and Irish Sea

3.15 Comparison for Western Mediterranean Sea buoys

3.16 Comparison for Mediterranean Sea buoys

3.17 Comparison for Korean buoys

3.18 Comparison for Japanese buoys

3.19 Comparison for Marshall Islands buoy

3.20 Comparison for Australian South East Coast buoys
Chapter 3

Results

In the remaining pages, some of the results of the comparison with buoys are presented for all common buoys and for common buoys within a sub-area as displayed by the corresponding maps. Summary forecast scores are shown first, followed by density scatter diagrams with associated statistics for each subarea. Only common data to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM are used.

This report was generated automatically, which explains its very generic appearance.
3.1 Comparison for all buoys

Figure 3.1: Buoy locations
Figure 3.2: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common all buoys.
(a) R.M.S.E.

(b) Correlation Coefficient

Figure 3.3: Forecast root mean square error (RMSE) and linear correlation coefficient at common all buoys.
Comparison of forecast (t+48) ECMWF wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t+48) UKMO wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t+48) FNMOC wave height with averaged buoy data. Forecasts from 0 and 12Z.

Figure 3.4: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed AES wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) AES wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed NCEP wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) NCEP wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed METFR wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) METFR wave height with averaged buoy data. forecasts from 0 and 12Z.

(a) t+0

(b) t+48

Figure 3.5: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.6: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.7: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.8: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast $(t=t+48)$ AES wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast $(t=t+48)$ NCEP wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast $(t=t+48)$ METFR wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed AES wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed NCEP wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed METFR wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

(a) $t+0$

(b) $t+48$

Figure 3.9: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed DWD wind speed with height corrected averaged buoy data forecasts from 0 and 12Z.

Comparison of forecast(t+48) DWD wind speed with height corrected averaged buoy data forecasts from 0 and 12Z.

Comparison of analysed AUSBM wind speed with height corrected averaged buoy data forecasts from 0 and 12Z.

Comparison of forecast(t+48) AUSBM wind speed with height corrected averaged buoy data forecasts from 0 and 12Z.

Comparison of analysed SHOM wind speed with height corrected averaged buoy data forecasts from 0 and 12Z.

Comparison of forecast(t+48) SHOM wind speed with height corrected averaged buoy data forecasts from 0 and 12Z.

(a) t + 0

(b) t + 48

Figure 3.10: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Figure 3.11: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.

(a) t+0

(b) t+48
Comparison of analysed ECMWF peak period with averaged buoy data, forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) ECMWF peak period with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed UKMO peak period with averaged buoy data, forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) UKMO peak period with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed FNMOC peak period with averaged buoy data, forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) FNMOC peak period with averaged buoy data, forecasts from 0 and 12Z.

Figure 3.12: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Figure 3.13: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed DWD peak period with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed AUSBM peak period with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed SHOM peak period with averaged buoy data, forecasts from 0 and 12Z.

Figure 3.14: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed JMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) JMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed KMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) KMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed PRTOS peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) PRTOS peak period with averaged buoy data. forecasts from 0 and 12Z.

Figure 3.15: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
3.2 Comparison for Hawaiian buoys

Figure 3.16: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.17: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Hawaiian buoys.
SIGNIFICANT WAVE HEIGHT ROOT MEAN SQUARE ERROR at 6 Hawaiian buoys

SIGNIFICANT WAVE HEIGHT CORRELATION COEFFICIENT at 6 Hawaiian buoys

10m WIND SPEED ROOT MEAN SQUARE ERROR at 6 Hawaiian buoys

10m WIND SPEED CORRELATION COEFFICIENT at 6 Hawaiian buoys

PEAK PERIOD ROOT MEAN SQUARE ERROR at 6 Hawaiian buoys

PEAK PERIOD CORRELATION COEFFICIENT at 6 Hawaiian buoys

(a) R.M.S.E.

(b) Correlation Coefficient

Figure 3.18: Forecast root mean square error (RMSE) and linear correlation coefficient at common Hawaiian buoys.
3.3 Comparison for North East Pacific buoys

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Lat</th>
<th>Lon</th>
<th>Model Lat</th>
<th>Model Lon</th>
<th>Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>46001</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Gulf of Alaska</td>
</tr>
<tr>
<td>46002</td>
<td>62°</td>
<td>62°</td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US West Coast, Oregon</td>
</tr>
<tr>
<td>46004</td>
<td>101°</td>
<td>101°</td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Canada West Coast, Middle Nomad</td>
</tr>
<tr>
<td>46005</td>
<td>101°</td>
<td>101°</td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US North-West Coast, W Alaska</td>
</tr>
<tr>
<td>46009</td>
<td>101°</td>
<td>101°</td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US West Coast, Columbia River Bar</td>
</tr>
<tr>
<td>46010</td>
<td>101°</td>
<td>101°</td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Central Gulf of Alaska</td>
</tr>
<tr>
<td>46012</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US West Coast, South Brooks</td>
</tr>
<tr>
<td>46026</td>
<td>101°</td>
<td>101°</td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Canada West Coast, South Nomad</td>
</tr>
<tr>
<td>46024</td>
<td>101°</td>
<td>101°</td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US South-West Coast, Cape Mendocino</td>
</tr>
<tr>
<td>46066</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Gulf of Alaska, Cape Suckling</td>
</tr>
<tr>
<td>46072</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US South-West Coast, Cape Mendocino (scripps 094)</td>
</tr>
<tr>
<td>46074</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US South-West Coast, Cape Mendocino (scripps 094)</td>
</tr>
<tr>
<td>46081</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US South-West Coast, Cape Mendocino (scripps 094)</td>
</tr>
<tr>
<td>46082</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US South-West Coast, Cape Mendocino (scripps 094)</td>
</tr>
<tr>
<td>46083</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US South-West Coast, Cape Mendocino (scripps 094)</td>
</tr>
<tr>
<td>46084</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US South-West Coast, Cape Mendocino (scripps 094)</td>
</tr>
<tr>
<td>46085</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Central Gulf of Alaska</td>
</tr>
<tr>
<td>46184</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Canada West Coast, North Nomad</td>
</tr>
<tr>
<td>46206</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Canada West Coast, W. Dixon Entrance</td>
</tr>
<tr>
<td>46208</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>Canada West Coast, East Dellwood</td>
</tr>
<tr>
<td>46246</td>
<td></td>
<td></td>
<td>49°00′1″</td>
<td>126°18′30″</td>
<td>US West Coast, Ocean Station PAPA (scripps 166) (OceanSites)</td>
</tr>
</tbody>
</table>

Figure 3.19: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.20: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Pacific buoys.
SIGNIFICANT WAVE HEIGHT ROOT MEAN SQUARE ERROR at 29 North East Pacific buoys

10m WIND SPEED ROOT MEAN SQUARE ERROR at 25 North East Pacific buoys

PEAK PERIOD ROOT MEAN SQUARE ERROR at 28 North East Pacific buoys

SIGNIFICANT WAVE HEIGHT CORRELATION COEFFICIENT at 29 North East Pacific buoys

10m WIND SPEED CORRELATION COEFFICIENT at 25 North East Pacific buoys

PEAK PERIOD CORRELATION COEFFICIENT at 28 North East Pacific buoys

(a) R.M.S.E.

(b) Correlation Coefficient

Figure 3.21: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Pacific buoys.
3.4 Comparison for North West Atlantic buoys

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>2015 Q4</th>
<th>2015 Q2</th>
<th>2015 Q1</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>41001</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US East Coast, E Hatteras</td>
</tr>
<tr>
<td>41002</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US South-East Coast, S Hatteras</td>
</tr>
<tr>
<td>41004</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US South-East Coast, Edisto</td>
</tr>
<tr>
<td>41010</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US East Florida, Cape Canaveral East</td>
</tr>
<tr>
<td>41036</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US North-East Coast, Cape Canaveral East</td>
</tr>
<tr>
<td>41048</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>W Bermuda</td>
</tr>
<tr>
<td>44005</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US North-East Coast, Gulf of Maine</td>
</tr>
<tr>
<td>44008</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US North-East Coast, Nantucket</td>
</tr>
<tr>
<td>44009</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US North-East Coast, Delaware bay</td>
</tr>
<tr>
<td>44011</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US North-East Coast, Georges Bank</td>
</tr>
<tr>
<td>44025</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>US North-East Coast, Long Island</td>
</tr>
<tr>
<td>44037</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>US North-East Coast, GMOOS M0103 Jordan Basin</td>
</tr>
<tr>
<td>44066</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>US North-East Coast, Texas #4</td>
</tr>
<tr>
<td>44137</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>Nova Scotia, East Scotia slope</td>
</tr>
<tr>
<td>44139</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>Newfoundland, Banquereau</td>
</tr>
<tr>
<td>44141</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>Nova Scotia, Laurentian Fan</td>
</tr>
<tr>
<td>44150</td>
<td>180</td>
<td>178</td>
<td>178</td>
<td>Nova Scotia, La Have Bank</td>
</tr>
</tbody>
</table>

Number of common observations for North West Atlantic buoys (NWATL) from 2015Q1 to 2015Q4 (wind, Hs, Tp)

Figure 3.22: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.23: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North West Atlantic buoys.
(a) R.M.S.E.

(b) Correlation Coefficient

Figure 3.24: Forecast root mean square error (RMSE) and linear correlation coefficient at common North West Atlantic buoys.
3.5 Comparison for Gulf of Mexico buoys

![Map of Gulf of Mexico showing buoy locations.](image)

Figure 3.25: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.26: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Gulf of Mexico buoys.
Figure 3.27: Forecast root mean square error (RMSE) and linear correlation coefficient at common Gulf of Mexico buoys.
3.6 Comparison for Caribbean Sea buoys

Number of common observations for Caribbean Sea buoys (CRB) from 201510 to 201512 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Wind</th>
<th>Hs</th>
<th>Tp</th>
</tr>
</thead>
<tbody>
<tr>
<td>41040</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>41041</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>41043</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>41044</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>41046</td>
<td>181</td>
<td>181</td>
<td>181</td>
</tr>
<tr>
<td>41047</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>41049</td>
<td>178</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>42056</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>42057</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>42058</td>
<td>178</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>42059</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>42060</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>

Figure 3.28: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.29: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Caribbean Sea buoys.
Figure 3.30: Forecast root mean square error (RMSE) and linear correlation coefficient at common Caribbean Sea buoys.
3.7 Comparison for North East Atlantic buoys

Figure 3.31: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.32: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Atlantic buoys.
Figure 3.33: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Atlantic buoys.
3.8 Comparison for Euro-Atlantic Coast buoys

Figure 3.34: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.35: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Euro-Atlantic Coast buoys.
Figure 3.36: Forecast root mean square error (RMSE) and linear correlation coefficient at common Euro-Atlantic Coast buoys.
3.9 Comparison for North Sea platforms

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>N</th>
<th>E</th>
<th>Number of common observations</th>
<th>Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q116</td>
<td>0</td>
<td>177</td>
<td>North Sea (Nelson A, Shell UK)</td>
<td>63055 176 176 North Sea shelf break (North Cormorant, Shell UK)</td>
</tr>
<tr>
<td>Q117</td>
<td>174</td>
<td>174</td>
<td>North Sea (Buchan A, Total)</td>
<td>63056 176 136 North Sea shelf break (Brent B, Exxon-Mobil)</td>
</tr>
<tr>
<td>Q118</td>
<td>0</td>
<td>177</td>
<td>North Sea (Forties, BP UK)</td>
<td>63057 176 176 North Sea shelf break (Harding, BP-Amoco)</td>
</tr>
<tr>
<td>Q119</td>
<td>177</td>
<td>177</td>
<td>North Sea (Shearwater, Shell UK)</td>
<td>63058 176 176 North Sea shelf break (Miller, Shell UK)</td>
</tr>
<tr>
<td>Q120</td>
<td>176</td>
<td>176</td>
<td>North Sea (Miller, Oil and Gas UK)</td>
<td>63059 176 176 North Sea shelf break (Brent A, Exxon-Mobil)</td>
</tr>
<tr>
<td>Q121</td>
<td>178</td>
<td>178</td>
<td>North Sea (Gannet, Shell UK)</td>
<td>63060 176 176 North Sea shelf break (Gannet, Shell UK)</td>
</tr>
<tr>
<td>Q122</td>
<td>178</td>
<td>178</td>
<td>North Sea (North Everest, BP UK)</td>
<td>63061 176 176 North Sea shelf break (North Everest, Shell UK)</td>
</tr>
<tr>
<td>Q123</td>
<td>178</td>
<td>178</td>
<td>North Sea (Elgin, Oil and Gas UK)</td>
<td>63062 176 176 North Sea shelf break (Elgin, Shell UK)</td>
</tr>
<tr>
<td>Q124</td>
<td>178</td>
<td>178</td>
<td>North Sea (Anasuria, Shell UK)</td>
<td>63063 176 176 North Sea shelf break (Anasuria, Shell UK)</td>
</tr>
<tr>
<td>Q125</td>
<td>178</td>
<td>178</td>
<td>North Sea (North Cormorant, Shell UK)</td>
<td>63064 176 176 North Sea shelf break (North Cormorant, Shell UK)</td>
</tr>
<tr>
<td>Q126</td>
<td>178</td>
<td>178</td>
<td>North Sea (Beryl B, Exxon-Mobil)</td>
<td>63065 176 176 North Sea shelf break (Beryl B, Exxon-Mobil)</td>
</tr>
<tr>
<td>Q127</td>
<td>178</td>
<td>178</td>
<td>North Sea (North Alwyn, Total UK)</td>
<td>63066 176 176 North Sea shelf break (North Alwyn, Total UK)</td>
</tr>
<tr>
<td>Q128</td>
<td>178</td>
<td>178</td>
<td>North Sea (Beryl A, Exxon-Mobil)</td>
<td>63067 176 176 North Sea shelf break (Beryl A, Exxon-Mobil)</td>
</tr>
<tr>
<td>Q129</td>
<td>178</td>
<td>178</td>
<td>North Sea (Brent A, Shell UK)</td>
<td>63068 176 176 North Sea shelf break (Brent A, Shell UK)</td>
</tr>
<tr>
<td>Q130</td>
<td>178</td>
<td>178</td>
<td>North Sea (Cormorant Alpha, Shell UK)</td>
<td>63069 176 176 North Sea shelf break (Cormorant Alpha, Shell UK)</td>
</tr>
<tr>
<td>Q131</td>
<td>178</td>
<td>178</td>
<td>North Sea (Brent A, Shell UK)</td>
<td>63070 176 176 North Sea shelf break (Brent A, Shell UK)</td>
</tr>
<tr>
<td>Q132</td>
<td>178</td>
<td>178</td>
<td>North Sea (Magnus, BP-Amoco)</td>
<td>63071 176 176 North Sea shelf break (Magnus, BP-Amoco)</td>
</tr>
</tbody>
</table>

Figure 3.37: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.38: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea platforms.
Figure 3.39: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea platforms.
3.10 Comparison for North Sea buoys

Number of common observations for North Sea buoys (SNS) from 201510 to 201512 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Start</th>
<th>End</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS042</td>
<td>0 176</td>
<td>177</td>
<td>North Sea, Blakeney Overfalls, UK Environment Agency</td>
</tr>
<tr>
<td>GS046</td>
<td>0 176</td>
<td>178</td>
<td>North Sea, Moray Firth, CEFAS</td>
</tr>
<tr>
<td>GS289</td>
<td>0 165</td>
<td>166</td>
<td>North Sea, Dowsing, CEFAS</td>
</tr>
<tr>
<td>BSH03</td>
<td>0 65</td>
<td>65</td>
<td>North Sea, German Bight (Elbe)</td>
</tr>
</tbody>
</table>

Figure 3.40: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.41: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea buoys.
Figure 3.42: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea buoys.
3.11 Comparison for Icelandic buoys and Norwegian platforms

Figure 3.43: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.44: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Icelandic buoys and Norwegian platforms.
Figure 3.45: Forecast root mean square error (RMSE) and linear correlation coefficient at common Icelandic buoys and Norwegian platforms.
Figure 3.46: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.47: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Barents Sea buoys.
Figure 3.48: Forecast root mean square error (RMSE) and linear correlation coefficient at common Barents Sea buoys.
3.13 Comparison for Baltic Sea buoys

Figure 3.49: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.50: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Baltic Sea buoys.
Figure 3.51: Forecast root mean square error (RMSE) and linear correlation coefficient at common Baltic Sea buoys.
3.14 Comparison for English Channel and Irish Sea

Figure 3.52: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.53: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common English Channel and Irish Sea.
Figure 3.54: Forecast root mean square error (RMSE) and linear correlation coefficient at common English Channel and Irish Sea.
3.15 Comparison for Western Mediterranean Sea buoys

Figure 3.55: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.56: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Western Mediterranean Sea buoys.
Figure 3.57: Forecast root mean square error (RMSE) and linear correlation coefficient at common Western Mediterranean Sea buoys.
3.16 Comparison for Mediterranean Sea buoys

Figure 3.58: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.59: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Mediterranean Sea buoys.
Figure 3.60: Forecast root mean square error (RMSE) and linear correlation coefficient at common Mediterranean Sea buoys.
3.17 Comparison for Korean buoys

Figure 3.61: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.62: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Korean buoys.
Figure 3.63: Forecast root mean square error (RMSE) and linear correlation coefficient at common Korean buoys.
3.18 Comparison for Japanese buoys

Figure 3.64: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.65: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Japanese buoys.
Figure 3.66: Forecast root mean square error (RMSE) and linear correlation coefficient at common Japanese buoys.
Figure 3.67: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.68: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Marshall Islands buoy.
Figure 3.69: Forecast root mean square error (RMSE) and linear correlation coefficient at common Marshall Islands buoy.
3.20 Comparison for Australian South East Coast buoys

Figure 3.70: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.71: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South East Coast buoys.
Figure 3.72: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South East Coast buoys.
3.21 Comparison for Australian Great Barrier Reef buoys

Figure 3.73: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.74: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian Great Barrier Reef buoys.
Figure 3.75: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian Great Barrier Reef buoys.
3.22 Comparison for Australian South West facing Coast buoys

Figure 3.76: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.77: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South West facing Coast buoys.
Figure 3.78: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South West facing Coast buoys.

(a) R.M.S.E.

(b) Correlation Coefficient
3.23 Comparison for Australian North West Coast buoys

Figure 3.79: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.80: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian North West Coast buoys.
Figure 3.81: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian North West Coast buoys.
3.24 Comparison for New Zealand buoy

Figure 3.82: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.83: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common New Zealand buoy.
Figure 3.84: Forecast root mean square error (RMSE) and linear correlation coefficient at common New Zealand buoy.
3.25 Comparison for Brazilian buoys

Figure 3.85: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.86: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Brazilian buoys.
Figure 3.87: Forecast root mean square error (RMSE) and linear correlation coefficient at common Brazilian buoys.