Intercomparison of operational wave forecasting systems against buoys: data from ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM
August 2011 to October 2011

Jean-Raymond Bidlot, European Centre for Medium-range Weather Forecasts, jean.bidlot@ecmwf.int

March 16, 2012
Chapter 1

Forewords

Outputs from different fully operational forecasting centres are compared to buoy and platform data as broadcasted to the meteorological community via the Global Telecommunication System (GTS). On a monthly basis, data are gathered informally from weather services with an interest in wave forecasting (Bidlot and Holt, 2006). The different data sets are subsequently merged and made available to all participating partners for further evaluation. In this document, examples, in graphical and tabular forms, are shown. These results have been processed at ECMWF and should serve as an example to the kind of information that could be obtained from such comparison. No statement of quality, nor reasons why the different systems are performing differently will be given.
Chapter 2

Data

Before using observations for verification, care has to be taken to process the data to remove any erroneous observations. Moreover, extra care has to be taken to match the scale of both model and observations. This scale matching is achieved by averaging the hourly data in ±2 hour time windows centered on the four major synoptic times corresponding to the normal model output times. The original quality control and averaging procedure was discussed in Bidlot et al. (2002). It was extended to include platform data as described in Sætra and Bidlot (2004). Note that in this paper we refer to these data as buoy data since most of them are from moored buoys, except if stated otherwise.

The intercomparison relies on the exchange of model output at buoy locations. An agreed upon list of locations is used where observations are known to be available. Because buoy networks are changing with time, as witnessed by a rapid increase in the number of buoys available via the GTS since the mid-nineties, updates to the list have been necessary. Not all participating centres have been able to update their list however. Other participants are only running limited area model(s) or do produce the parameter(s) that can be compared to the buoy data. Because of the limited number of buoys, a fair comparison between the different systems can only be achieved if the same number of buoys and the same number of buoy-model collocations are used.

In this document, data that are common to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM are used whenever available. Some sub-areas might only have some of the participants and when all locations are considered, the limited models are left out. The other participants are left blank in the plots below.
References

Contents

1 Forewords 1

2 Data .. 2

3 Results 5

 3.1 Comparison for all buoys 6
 3.2 Comparison for Hawaiian buoys 21
 3.3 Comparison for North East Pacific buoys 24
 3.4 Comparison for North West Atlantic buoys 27
 3.5 Comparison for Gulf of Mexico buoys 30
 3.6 Comparison for Caribbean Sea buoys 33
 3.7 Comparison for North East Atlantic buoys 36
 3.8 Comparison for Euro-Atlantic Coast buoys 39
 3.9 Comparison for North Sea platforms 42
 3.10 Comparison for North Sea buoys 45
 3.11 Comparison for Icelandic buoys and Norwegian platforms 48
 3.12 Comparison for Barents Sea buoys 51
 3.13 Comparison for Baltic Sea buoys 54
 3.14 Comparison for English Channel and Irish Sea 57
 3.15 Comparison for Western Mediterranean Sea buoys 60
 3.16 Comparison for Mediterranean Sea buoys 63
 3.17 Comparison for Korean buoys 66
 3.18 Comparison for Japanese buoys 69
 3.19 Comparison for Marshall Islands buoy 72
 3.20 Comparison for Australian South East Coast buoys 75
 3.21 Comparison for Australian South West facing Coast buoys 78
3.22 Comparison for Australian North West Coast buoys ... 81
3.23 Comparison for New Zealand buoy .. 84
3.24 Comparison for Brazilian buoys ... 87
Chapter 3

Results

In the remaining pages, some of the results of the comparison with buoys are presented for all common buoys and for common buoys within a sub-area as displayed by the corresponding maps. Summary forecast scores are shown first, followed by density scatter diagrams with associated statistics for each subarea. Only common data to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM are used.

This report was generated automatically, which explains its very generic appearance.
3.1 Comparison for all buoys

Figure 3.1: Buoy locations
Figure 3.2: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common all buoys.
Figure 3.3: Forecast root mean square error (RMSE) and linear correlation coefficient at common all buoys.
Comparison of forecast(t=t+48) ECMWF wave height with averaged buoy data. fc from 0 and 12Z.

Figure 3.4: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.5: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
(a) t+0

Comparison of forecast(t=t+48) SHOM wave height with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) DWD wave height with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) AUSBM wave height with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) SHOM wave height with averaged buoy data. fc from 0 and 12Z.

(b) t+48

Figure 3.6: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.7: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed ECMWF wind speed with height corrected averaged buoy data, fc from 0 and 12Z.

Comparison of analysed UKMO wind speed with height corrected averaged buoy data, fc from 0 and 12Z.

Comparison of forecast(t+48) ECMWF wind speed with height corrected averaged buoy data, fc from 0 and 12Z.

Comparison of forecast(t+48) UKMO wind speed with height corrected averaged buoy data, fc from 0 and 12Z.

Figure 3.8: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast(t=t+48) METFR wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of analysed METFR wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of analysed AES wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) AES wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of analysed NCEP wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) NCEP wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of analysed MeteoFrance wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) MeteoFrance wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Figure 3.9: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Figure 3.10: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed JMA wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of analysed KMA wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of analysed PRTOS wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t+48) JMA wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t+48) KMA wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t+48) PRTOS wind speed with height corrected averaged buoy data. fc from 0 and 12Z.

Figure 3.11: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Figure 3.12: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed AES peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) AES peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of analysed NCEP peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) NCEP peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of analysed MeteoFrance peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast(t=t+48) MeteoFrance peak period with averaged buoy data. fc from 0 and 12Z.

(a) t+0

(b) t+48

Figure 3.13: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast \(t = t + 48 \) SHOM peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of analysed SHOM peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast \(t = t + 48 \) BoM peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of analysed BoM peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast \(t = t + 48 \) DWD peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of analysed DWD peak period with averaged buoy data. fc from 0 and 12Z.

Figure 3.14: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast (t = t+48) PRTOS peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of analysed PRTOS peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of analysed KMA peak period with averaged buoy data. fc from 0 and 12Z.

Comparison of forecast (t = t+48) KMA peak period with averaged buoy data. fc from 0 and 12Z.

Figure 3.15: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
3.2 Comparison for Hawaiian buoys

Figure 3.16: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.17: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Hawaiian buoys.
Figure 3.18: Forecast root mean square error (RMSE) and linear correlation coefficient at common Hawaiian buoys.
3.3 Comparison for North East Pacific buoys

Figure 3.19: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.20: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Pacific buoys.
Figure 3.21: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Pacific buoys.
3.4 Comparison for North West Atlantic buoys

Number of common observations for North West Atlantic buoys (NWATL) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Number</th>
<th>Buoy Identifier</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41001</td>
<td>136 136 136 US East Coast, E Hatteras</td>
</tr>
<tr>
<td>2</td>
<td>41010</td>
<td>170 170 170 US East Florida, Cape Canaveral East</td>
</tr>
<tr>
<td>3</td>
<td>41026</td>
<td>122 169 169 US East Coast, Okeonea Bay offshore</td>
</tr>
<tr>
<td>4</td>
<td>44008</td>
<td>65 171 171 US North-East Coast, Nantucket</td>
</tr>
<tr>
<td>5</td>
<td>44011</td>
<td>36 36 36 US North-East Coast, Georges Bank</td>
</tr>
<tr>
<td>6</td>
<td>44037</td>
<td>171 169 169 US North-East Coast, GMOOS MD102 Jordan Basin</td>
</tr>
<tr>
<td>7</td>
<td>44137</td>
<td>170 172 172 Nova Scotia, East Scotia slope</td>
</tr>
</tbody>
</table>

![Buoy locations map](image)

Figure 3.22: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.23: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North West Atlantic buoys.
Figure 3.24: Forecast root mean square error (RMSE) and linear correlation coefficient at common North West Atlantic buoys.
3.5 Comparison for Gulf of Mexico buoys

Number of common observations for Gulf of Mexico buoys (GM) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>GM</th>
<th>Hs</th>
<th>Tp</th>
</tr>
</thead>
</table>
| 42001 | 1 | 95 | 165| 18.5°N 18.5°N
| 42002 | 2 | 93 | 93 | 19°N 19°N
| 42003 | 3 | 170| 149| 19.5°N 19.5°N
| 42019 | 4 | 102| 97 | 20°N 20°N
| 42039 | 5 | 169| 127| 20.5°N 20.5°N
| 42049 | 6 | 172| 150| 21°N 21°N
| 42055 | 7 | 169| 164| 21.5°N 21.5°N
| 42099 | 8 | 0 | 152| 22°N 22°N
| 42060 | 9 | 169| 147| 22.5°N 22.5°N
| 42099 | 10 | 169| 147| 23°N 23°N
| 42099 | 11 | 169| 147| 23.5°N 23.5°N
| 42099 | 12 | 169| 147| 24°N 24°N
| 42099 | 13 | 169| 147| 24.5°N 24.5°N
| 42099 | 14 | 169| 147| 25°N 25°N
| 42099 | 15 | 169| 147| 25.5°N 25.5°N
| 42099 | 16 | 169| 147| 26°N 26°N
| 42099 | 17 | 169| 147| 26.5°N 26.5°N
| 42099 | 18 | 169| 147| 27°N 27°N
| 42099 | 19 | 169| 147| 27.5°N 27.5°N
| 42099 | 20 | 169| 147| 28°N 28°N
| 42099 | 21 | 169| 147| 28.5°N 28.5°N
| 42099 | 22 | 169| 147| 29°N 29°N
| 42099 | 23 | 169| 147| 29.5°N 29.5°N

Figure 3.25: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.26: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Gulf of Mexico buoys.
Figure 3.27: Forecast root mean square error (RMSE) and linear correlation coefficient at common Gulf of Mexico buoys.
3.6 Comparison for Caribbean Sea buoys

Number of common observations for Caribbean Sea buoys (CRB) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>CRB</th>
<th>Tropical Atlantic, West Atlantic</th>
<th>171</th>
<th>171</th>
<th>171</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41040</td>
<td>169</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>41041</td>
<td>168</td>
<td>169</td>
<td>168</td>
</tr>
<tr>
<td>3</td>
<td>41043</td>
<td>169</td>
<td>171</td>
<td>171</td>
</tr>
<tr>
<td>4</td>
<td>41046</td>
<td>169</td>
<td>169</td>
<td>169</td>
</tr>
<tr>
<td>5</td>
<td>41047</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>6</td>
<td>41101</td>
<td>169</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>42056</td>
<td>172</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td>8</td>
<td>42057</td>
<td>171</td>
<td>171</td>
<td>167</td>
</tr>
<tr>
<td>9</td>
<td>42058</td>
<td>171</td>
<td>171</td>
<td>171</td>
</tr>
<tr>
<td>10</td>
<td>42059</td>
<td>172</td>
<td>172</td>
<td>172</td>
</tr>
</tbody>
</table>

Figure 3.28: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.29: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Caribbean Sea buoys.
Figure 3.30: Forecast root mean square error (RMSE) and linear correlation coefficient at common Caribbean Sea buoys.
3.7 Comparison for North East Atlantic buoys

Number of common observations for North East Atlantic buoys (NEATL) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Wind</th>
<th>Hs</th>
<th>Tp</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>62029</td>
<td>165</td>
<td>46</td>
<td>0</td>
<td>UK Celtic Sea shelf break (K1)</td>
</tr>
<tr>
<td>62061</td>
<td>0</td>
<td>167</td>
<td>0</td>
<td>UK East Atlantic (K2)</td>
</tr>
<tr>
<td>62095</td>
<td>167</td>
<td>167</td>
<td>0</td>
<td>West Ireland (MI), West Coast</td>
</tr>
<tr>
<td>62105</td>
<td>167</td>
<td>167</td>
<td>0</td>
<td>UK East Atlantic (K4)</td>
</tr>
<tr>
<td>62163</td>
<td>167</td>
<td>167</td>
<td>0</td>
<td>UK Celtic Sea shelf break (Brittany)</td>
</tr>
<tr>
<td>64045</td>
<td>166</td>
<td>166</td>
<td>0</td>
<td>UK North-East Atlantic (K5)</td>
</tr>
</tbody>
</table>

Figure 3.31: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.32: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Atlantic buoys.
Figure 3.33: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Atlantic buoys.
3.8 Comparison for Euro-Atlantic Coast buoys

Figure 3.34: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.35: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Euro-Atlantic Coast buoys.
Figure 3.36: Forecast root mean square error (RMSE) and linear correlation coefficient at common Euro-Atlantic Coast buoys.
3.9 Comparison for North Sea platforms

Number of common observations for North Sea platforms (NSEA) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Number</th>
<th>ID</th>
<th>01inning</th>
<th>02inning</th>
<th>03inning</th>
<th>04inning</th>
<th>05inning</th>
<th>06inning</th>
<th>07inning</th>
<th>08inning</th>
<th>09inning</th>
<th>10inning</th>
<th>11inning</th>
<th>12inning</th>
<th>13inning</th>
<th>14inning</th>
<th>15inning</th>
<th>16inning</th>
<th>17inning</th>
<th>18inning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62118</td>
<td>158</td>
<td>158</td>
<td>0</td>
<td>North Sea (Forties, BP UK)</td>
<td>10</td>
<td>62164</td>
<td>156</td>
<td>156</td>
<td>0</td>
<td>North Sea (Anasuria, Shell UK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>62119</td>
<td>159</td>
<td>142</td>
<td>0</td>
<td>North Sea (Shearwater, Shell UK)</td>
<td>11</td>
<td>63065</td>
<td>52</td>
<td>35</td>
<td>0</td>
<td>North Sea shell break (Dunbar, TotalFinaElf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>62120</td>
<td>160</td>
<td>160</td>
<td>0</td>
<td>North Sea (Brae West, Marathon UK)</td>
<td>12</td>
<td>63056</td>
<td>159</td>
<td>118</td>
<td>0</td>
<td>North Sea shell break (Beryl B, Exxon-Mobil)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>62123</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>North Sea shell break (Harding, BP-Amoco)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>62133</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>North Sea (Gannet, Shell UK)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>62143</td>
<td>158</td>
<td>135</td>
<td>0</td>
<td>North Sea (Everest, BP UK)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>62145</td>
<td>161</td>
<td>159</td>
<td>0</td>
<td>North Sea (Sean PaPa, Shell UK)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>62166</td>
<td>45</td>
<td>156</td>
<td>0</td>
<td>North Sea shell break (Lomond, BP-Amoco)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>62152</td>
<td>51</td>
<td>123</td>
<td>0</td>
<td>North Sea (Elgin, TotalFinaElf)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.37: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.38: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea platforms.
Figure 3.39: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea platforms.
3.10 Comparison for North Sea buoys

Number of common observations for North Sea buoys (SNS) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Number of Collocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>62042</td>
<td>0 167 162</td>
</tr>
<tr>
<td>62046</td>
<td>0 129 127</td>
</tr>
<tr>
<td>62289</td>
<td>0 173 168</td>
</tr>
<tr>
<td>62293</td>
<td>0 173 170</td>
</tr>
<tr>
<td>BSH02</td>
<td>0 168 170</td>
</tr>
<tr>
<td>BSH03</td>
<td>0 168 170</td>
</tr>
<tr>
<td>BSH04</td>
<td>0 175 0</td>
</tr>
</tbody>
</table>

Figure 3.40: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.41: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea buoys.
Figure 3.42: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea buoys.
3.11 Comparison for Icelandic buoys and Norwegian platforms

Number of common observations for Icelandic buoys and Norwegian platforms (NRDIC) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th></th>
<th>LF3F</th>
<th>171</th>
<th>112</th>
<th>0</th>
<th>N Norwegian Sea (Draugen, Norske Shell)</th>
<th>LF4H</th>
<th>172</th>
<th>171</th>
<th>0</th>
<th>S Norwegian Sea (Heimdal, StatoilHydro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>LF3N</td>
<td>172</td>
<td>161</td>
<td>0</td>
<td>N Norwegian Sea (Heidrun, StatoilHydro)</td>
<td>LFST</td>
<td>170</td>
<td>130</td>
<td>0</td>
<td>S Norwegian Sea (Norne FPSO, StatoilHydro)</td>
</tr>
<tr>
<td>3</td>
<td>LF4B</td>
<td>173</td>
<td>133</td>
<td>0</td>
<td>S Norwegian Sea (Troll A, StatoilHydro)</td>
<td>TFSRT</td>
<td>156</td>
<td>0</td>
<td>0</td>
<td>South Iceland (Surtsey)</td>
</tr>
<tr>
<td>4</td>
<td>LF4C</td>
<td>167</td>
<td>133</td>
<td>0</td>
<td>North Sea (Siegeran, StatoilHydro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.43: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.44: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Icelandic buoys and Norwegian platforms.
Figure 3.45: Forecast root mean square error (RMSE) and linear correlation coefficient at common Icelandic buoys and Norwegian platforms.
3.12 Comparison for Barents Sea buoys

![Buoy locations](image)

Figure 3.46: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.47: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Barents Sea buoys.
Figure 3.48: Forecast root mean square error (RMSE) and linear correlation coefficient at common Barents Sea buoys.
3.13 Comparison for Baltic Sea buoys

Figure 3.49: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.50: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Baltic Sea buoys.
Figure 3.51: Forecast root mean square error (RMSE) and linear correlation coefficient at common Baltic Sea buoys.
3.14 Comparison for English Channel and Irish Sea

Number of common observations for English Channel and Irish Sea (CHNIS) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy Identifier</th>
<th>Wind</th>
<th>Hs</th>
<th>Tp</th>
<th>Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>62023</td>
<td>153</td>
<td>173</td>
<td>0</td>
<td>South Ireland, Marathon rig</td>
</tr>
<tr>
<td>62044</td>
<td>161</td>
<td>159</td>
<td>0</td>
<td>English Channel, South Knock CEFAS</td>
</tr>
<tr>
<td>62081</td>
<td>173</td>
<td>172</td>
<td>0</td>
<td>Irish Sea (M2), Lambay</td>
</tr>
<tr>
<td>62125</td>
<td>34</td>
<td>35</td>
<td>0</td>
<td>Liverpool Bay, Douglas Complex AP1</td>
</tr>
<tr>
<td>62287</td>
<td>0</td>
<td>165</td>
<td>168</td>
<td>Irish Sea, Liverpool Bay, CEFAS</td>
</tr>
<tr>
<td>62303</td>
<td>173</td>
<td>173</td>
<td>0</td>
<td>Bristol Channel (Pembroke buoy)</td>
</tr>
<tr>
<td>62X20</td>
<td>173</td>
<td>171</td>
<td>0</td>
<td>Irish Sea, Barrow, CEFAS</td>
</tr>
</tbody>
</table>

Figure 3.52:
Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.53: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common English Channel and Irish Sea.
Figure 3.54: Forecast root mean square error (RMSE) and linear correlation coefficient at common English Channel and Irish Sea.
3.15 Comparison for Western Mediterranean Sea buoys

Figure 3.55: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.56: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Western Mediterranean Sea buoys.
Figure 3.57: Forecast root mean square error (RMSE) and linear correlation coefficient at common Western Mediterranean Sea buoys.
3.16 Comparison for Mediterranean Sea buoys

Number of common observations for Mediterranean Sea buoys (MEDIT) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th></th>
<th>61308</th>
<th>0</th>
<th>130</th>
<th>81</th>
<th>Mazara (Italy)</th>
<th>7</th>
<th>61218</th>
<th>0</th>
<th>178</th>
<th>106</th>
<th>Ancona (Italy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>61209</td>
<td>0</td>
<td>169</td>
<td>85</td>
<td>Palermo (Italy)</td>
<td>8</td>
<td>61300</td>
<td>113</td>
<td>181</td>
<td>0</td>
<td>Skyros, North Aegean Sea (HCMR)</td>
</tr>
<tr>
<td>3</td>
<td>61213</td>
<td>0</td>
<td>164</td>
<td>106</td>
<td>Alghero (Italy)</td>
<td>9</td>
<td>61323</td>
<td>182</td>
<td>182</td>
<td>0</td>
<td>Athos, North Aegean Sea (HCMR)</td>
</tr>
<tr>
<td>4</td>
<td>61214</td>
<td>0</td>
<td>177</td>
<td>113</td>
<td>Ponza (Italy)</td>
<td>10</td>
<td>61325</td>
<td>180</td>
<td>180</td>
<td>0</td>
<td>Mykonos, Central Aegean Sea (HCMR)</td>
</tr>
<tr>
<td>5</td>
<td>61215</td>
<td>0</td>
<td>178</td>
<td>107</td>
<td>Monopoli (Italy)</td>
<td>11</td>
<td>61327</td>
<td>125</td>
<td>123</td>
<td>0</td>
<td>E1M3A, North Crete (HCMR)</td>
</tr>
<tr>
<td>6</td>
<td>61216</td>
<td>0</td>
<td>176</td>
<td>92</td>
<td>Civitavecchia (Italy)</td>
<td>12</td>
<td>61329</td>
<td>182</td>
<td>182</td>
<td>0</td>
<td>Zakynthos, Ionian Sea (HCMR)</td>
</tr>
</tbody>
</table>

Figure 3.58: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.59: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Mediterranean Sea buoys.
Figure 3.60: Forecast root mean square error (RMSE) and linear correlation coefficient at common Mediterranean Sea buoys.
3.17 Comparison for Korean buoys

<table>
<thead>
<tr>
<th>Number</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22102</td>
<td>155</td>
<td>152</td>
<td>0</td>
<td>Chil-Bal-Do Yellow Sea, South Korea</td>
</tr>
<tr>
<td>2</td>
<td>22103</td>
<td>166</td>
<td>165</td>
<td>0</td>
<td>Geo-Mun-Do, Korean Strait, South Korea</td>
</tr>
<tr>
<td>3</td>
<td>22105</td>
<td>166</td>
<td>165</td>
<td>0</td>
<td>Dong-Hae, Eastern Sea, South Korea</td>
</tr>
<tr>
<td>4</td>
<td>22107</td>
<td>167</td>
<td>167</td>
<td>0</td>
<td>Jeju, Korean Strait, South Korea</td>
</tr>
<tr>
<td>5</td>
<td>22108</td>
<td>170</td>
<td>156</td>
<td>0</td>
<td>Oeyeondo, Yellow Sea South Korea</td>
</tr>
</tbody>
</table>

Figure 3.61: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.62: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Korean buoys.
Figure 3.63: Forecast root mean square error (RMSE) and linear correlation coefficient at common Korean buoys.
3.18 Comparison for Japanese buoys

Figure 3.64: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.65: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Japanese buoys.
Figure 3.66: Forecast root mean square error (RMSE) and linear correlation coefficient at common Japanese buoys.
3.19 Comparison for Marshall Islands buoy

Number of common observations for Marshall Islands buoy (MRSHL) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th></th>
<th>52281</th>
<th>0</th>
<th>79</th>
<th>0</th>
<th>Kalo, Majuro, Marshall Islands (scripps 163)</th>
</tr>
</thead>
</table>

Figure 3.67: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.68: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Marshall Islands buoy.
Figure 3.69: Forecast root mean square error (RMSE) and linear correlation coefficient at common Marshall Islands buoy.
3.20 Comparison for Australian South East Coast buoys

Number of common observations for Australian South East Coast buoys (ASEC) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Number</th>
<th>Buoy Identifier</th>
<th>Collocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55018</td>
<td>0 136 135</td>
</tr>
<tr>
<td>2</td>
<td>55022</td>
<td>0 3 3</td>
</tr>
<tr>
<td>3</td>
<td>55024</td>
<td>0 173 173</td>
</tr>
<tr>
<td>4</td>
<td>55039</td>
<td>0 158 0</td>
</tr>
</tbody>
</table>

Figure 3.70: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
SIGNIFICANT WAVE HEIGHT SCATTER INDEX at 4 Australian South East Coast buoys

SIGNIFICANT WAVE HEIGHT BIAS at 4 Australian South East Coast buoys

10m WIND SPEED SCATTER INDEX at 0 Australian South East Coast buoys

10m WIND SPEED BIAS at 0 Australian South East Coast buoys

PEAK PERIOD SCATTER INDEX at 3 Australian South East Coast buoys

PEAK PERIOD BIAS at 3 Australian South East Coast buoys

(a) Scatter Index (%)

(b) Bias (model-buoy)

Figure 3.71: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South East Coast buoys.
SIGNIFICANT WAVE HEIGHT ROOT MEAN SQUARE ERROR at 4 Australian South East Coast

10m WIND SPEED ROOT MEAN SQUARE ERROR at 0 Australian South East Coast buoys

PEAK PERIOD ROOT MEAN SQUARE ERROR at 3 Australian South East Coast buoys

(a) R.M.S.E.

SIGNIFICANT WAVE HEIGHT CORRELATION COEFFICIENT at 4 Australian South East Coast

10m WIND SPEED CORRELATION COEFFICIENT at 0 Australian South East Coast buoys

PEAK PERIOD CORRELATION COEFFICIENT at 3 Australian South East Coast buoys

(b) Correlation Coefficient

Figure 3.72: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South East Coast buoys.
3.21 Comparison for Australian South West facing Coast buoys

Figure 3.73: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.74: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South West facing Coast buoys.
Figure 3.75: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South West facing Coast buoys.
3.22 Comparison for Australian North West Coast buoys

Figure 3.76: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.77: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian North West Coast buoys.
Figure 3.78: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian North West Coast buoys.
3.23 Comparison for New Zealand buoy

Number of common observations for New Zealand buoy (NZ) from 201108 to 201110 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy</th>
<th>0</th>
<th>173</th>
<th>173</th>
<th>Banks Peninsula, NZ</th>
</tr>
</thead>
</table>

Figure 3.79: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.80: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common New Zealand buoy.
Figure 3.81: Forecast root mean square error (RMSE) and linear correlation coefficient at common New Zealand buoy.
3.24 Comparison for Brazilian buoys

Figure 3.82: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.83: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Brazilian buoys.
Figure 3.84: Forecast root mean square error (RMSE) and linear correlation coefficient at common Brazilian buoys.